● 中国机械工程学会无损检测分会 RT培训讲义

本讲义由学会常务委员 晏荣明 编写 (仅供参考)

中国机械工程学会无损检测分会 深圳市无损检测人员培训中心

电话: 021-65550277 电话: 13538291001

邮箱: chsndt2008@163.com 邮箱: <u>yanrongming@126.com</u>

第一章 射线检测的物理基础

Chapter 1 Foundations of Radiographic Testing

内容 Contents

- 原子与原子结构
- 射线的种类和性质
- 光子与物质的相互作用
- 射线衰减规律
- 射线检测原理与灵敏度
- 影像质量

原子与原子结构 Atom & Structure

- 元素与原子
- 核外电子运动规律
- 原子核结构

元素与原子

- 元素: 物质由元素构成, 已发现100多种元素;
- 元素符号: 如C表示碳;
- 原子:

体现元素的最小微粒,组成分子,直径10⁻¹⁰m; 原子相对质量:以C原子质量1.9927x10⁻²⁶Kg的 1/12为基准;

结构:原子核与核外电子组成;

元素与原子

- 原子核:
 由质子和中子组成,半径:原子的万分之一;
- 质子: 微粒,质量: 1.6726×10⁻²⁷kg 电量: 一个单位正电荷, 1.6021892×10⁻¹⁹C
- 中子: 微粒,质量: 1.6748×10⁻²⁷kg,不带电

电子:质量:9.1095×10⁻³¹kg,
 电量:一个单位负电荷(简记为e)

元素与原子

- 质子数=核电荷数=核外电子数=原子序数
- 原子相对质量=质子数+中子数,A=Z+N
 如:某质量为A,原子序数为Z的元素X:
 表示:原子核有N个质子,A-N个中子, 核外有N个电子
- 核素:凡具有一定质子数和中子数并处于特定能量状态的原子或原子核;
- 表示方法:

质量为60,原子序数为27,27个质子,33个中子,核外27个电子。

 $^{60}_{27}Co$

元素与原子

- 同位素: 具有相同的质子数、不同的中子数, 如
- ${}^{1}_{1}H, {}^{2}_{1}H, {}^{3}_{1}H = {}^{234}_{92}U, {}^{235}_{92}U, {}^{238}_{92}U = {}^{12}_{6}C, {}^{13}_{6}C, {}^{14}_{6}C = {}^{59}_{27}Co, {}^{60}_{27}Co$
- 核素分类:稳定:
 ¹²₆C ⁵⁹₂₇Co
 不稳定(放射性):¹⁴₆C ⁶⁰₂₇Co

元素与原子

放射性核素分类:
 天然:所有Z>83的天然存在约40种元素;

人工:1千多种元素,γ射线检测多为此类。

核外电子运动规律

- 运动规律: 电子围绕原子核旋转;
- 电子层: 分层结构;
- 电子数: 2n²

核外电子运动规律

• 波尔频率规则:

原子只能处于分立能量状态,原子稳定,定态 原子从一种定态En 跃迁到另一种定态Em时,辐 射或吸收一定频率的光子 hv=En – Em

- 基态: 原子的最低能级
- 激发态: 除基态以外

原子核结构

- 原子核半径: 原子的万分之一;
- 原子核质量: 占原子的99%

原子核结构——原子结构模型

- 20世纪初,汤姆孙:葡萄干面包球体模型: 均匀阳电球体,电子均匀分布;
- 1911年,卢瑟福:核式结构模型:原子核带正
 电,集中绝大部质量,核外散布带负电的电子;
- 1913年,波耳: 卢瑟福一波尔行星模型: 原子核+核外电子。

原子核结构——放射性衰变

• 试验:

原子核自发地发射出射线转变为另一种原 子核的现象,以镭为例,在磁场和电场作用下 射线分为3束:带正电、带负电和不带电。

原子核结构——放射性衰变

- α 衰变: 原子核放出 α 粒子(α 射线): $_{Z}^{A}X \rightarrow _{Z-2}^{A-4}X + _{2}^{4}He$
- β^{-1} 衰变: 原子核放出 β 粒子(β 射线) ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}X + e^{-1}$
- γ衰变:原子核发生以上衰变后回到稳态时, 辐射γ射线——电磁波

- 光的本质:
 牛顿——粒子说;
 惠更斯——波动说
- 1905年,爱因斯坦——光量子流
- 光子能量:
 ε= hv

式中 h=6.626×10⁻³⁴ J.s, 普朗克常数 v——频率, Hz

射线的种类和性质 Radiation: Classification & Characteristics

- 射线的分类
- X射线和y射线的特性
- X射线的产生及其特点
- **γ**射线的产生及其特点
- 工业检测常用放射性同位素的特性

射线分类 Classification of rays

- 射线: 电磁辐射、粒子辐射
- 电磁辐射: 辐射光子, 如X射线、γ射线

光子能量: E=hv 特点: 静止质量0

• 粒子辐射: 如α粒子、β粒子、质子、电子、 中子等, 特点: 有确定的静止质量.

射线分类 Classification of rays

- 粒子射线:特点:有确定的静止质量
 α射线(α衰变产生)、质子射线(加速器产生), 特点:二者带正电,穿透力弱;
 - β射线(β衰变产生)、电子射线(加速器产生), 特点:二者带负电,穿透力弱;
 - 中子射线(放射性同位素、加速器、核反应堆产 生),特点:不带电,高原子序数物质穿透力强, 反之则弱。

X射线和γ射线的特性 Characteristic of X-rays &γ-rays

 实质:与可见光、红外线等同属电磁辐射, 只是波长和产生方法不同。

图 1-2 电磁波谱

X射线和γ射线的特性 Characteristic of X-rays &γ-rays

- 在真空中以光速直线传播;
- 电中性:不受电场、磁场影响;
- 在界面发生反射(非镜面反射,因表面粗糙)、 折射(折射率近似1,几乎不改变方向);
- 可发生衍射与干涉(只在晶体光阑中才发生);

X射线和γ射线的特性 Characteristic of X-rays &γ-rays

- 不可见,但可穿透物质;
- 波粒二象性;
- 与物质发生物理和化学作用(如电离、荧光、 热、光化学);
- 具有辐射生物效应,杀伤生物细胞,破坏 生物组织。

X-rays: Generation & Characteristics

• X射线的发现:

1895, Wilhelm Conrad Roentgen在德国

Wuerzburg 大学

1912年,劳厄证实X射线是电磁波,波长 0.005~10nm

X-rays: Generation & Characteristics

• X射线的产生: 高速运动电子撞击阳极靶, 电子 速度急剧下降, 发生轫致辐射产生X射线。

X-rays: Generation & Characteristics

• X射线谱: X射线强度随波长分布的关系。

分为: 连续X射线谱, 特征X射线谱

X-rays: Generation & Characteristics

• 连续X射线谱:

由轫致辐射(即高速运动电子与原子核碰撞 发生骤然减速时产生的辐射)产生。由于大量电 子的初始速度不同,加之电子减速过程不同,所 以辐射光子能量多样,形成连续谱。

X-rays: Generation & Characteristics

• 连续谱的波长:

如果电子的全部动能转变为辐射能,则: E=ev =hv_{max}

• 最强波长与最短波长: $\lambda_m = 1.5\lambda_{min}$

X-rays: Generation & Characteristics

• 连续谱的强度:

I = αiZV²
式中: i——管电流, mA; V——管电压, KV
Z——靶材料原子序数; α=(1.1-1.4)X10⁻⁶

图 1-4 X 射线逆 a) 不同管电流 b) 不同管电压

X-rays: Generation & Characteristics

• X射线的转换效率:

X射线管的输入功率为: iv 转换效率为: η = l/iv = αZV 以钨(Z=74)靶, 100kV为例: η=0.9%

加速器产生4MeV的高能X射线的转换效率为36%

X-rays: Generation & Characteristics

• 特征X射线谱(标识X射线谱):

由跃迁辐射产生,即当电子击出原子内层轨道 电子形成空位时,邻近电子层的电子向内层跃迁, 形成辐射。由于电子层不同辐射的谱线有特定波 长,反映靶材料的原子结构特点。

标识谱的强度占总强度极少,能量很低,对检 测基本不起作用。

X射线的产生及其特点 X-rays: Generation & Characteristics

图 1-6 钨靶的电子跃迁示意图

图 1-7 钨在较高管电玉时的 X 射能谱

γ射线的产生及其特点

γ-ray Generation & Characteristics

• **y**射线的产生:

放射性同位素经过α或β衰变(即原子核衰变)之 后,从激发态向稳态过渡过程中产生的,称为衰 变或跃迁。是原子核能级之间跃迁的结果。比核 外电子跃迁所辐射的光子的能量高得多。

γ-ray Generation & Characteristics

• v射线的谱: 由于不同原子核的能级结构不同,所辐射产生的 v射线的能量不同,为线状谱线状谱,只出现在特 定波长。 1.0 0.8 相对强度· 0.6 1:33MeV 1.17MeV 0.4 0.2 30 25 2.0 0.5 1.5 1.0 能量 E(MeV) -Co60 的 y 射线的线状能谱

γ-ray Generation & Characteristics

放射性衰变规律: N=N₀e^{-λt}
 式中
 N——t时刻未衰变原子核数量
 N₀——t=0时刻未衰变原子核数量
 λ——衰变常数,单位时间内原子核
 发生衰变的几率

γ-ray Generation & Characteristics

• 半衰期Half-Life: 未衰变的放射性原子核数 量减少到原来一半所需的时间。

 $T_{1/2} = 0.693/\lambda$

• 特点: 不同放射性元素的半衰期是固定的

y-ray Generation & Characteristics

¹⁴₆C 断代法:
1949年美国w,f利比发明测定年代技术。
¹⁴₆C半衰期 =5730年,生物中的¹²₆C与 ¹⁴₆C
的比例相同,但死后¹⁴₆C衰减,二者比例变化—
—通过测量二者的比例,可推算出年代。

• Cs-137(铯137):

是U-235分裂时的产物,2种方式,变为稳定的¹³⁷Ba半衰期为33年,实际使用的辐射 源是CsCI,液化温度为28℃,须防泄漏。

• Ir-192 (铱192): 半衰期为74天 是中子轰击Ir-191形成。

图 1-9 Ir192 蜕变图

• 活度: 单位时间(1s)内发生衰变的核的 个数,单位: Bq(贝可)

1Bq = 1/s

- •比活度:单位质量辐射源的活度: Bq/g
- 活度专用单位: Ci (居里):

1Ci=3.7x10¹⁰ Bq

射线与物质的相互作用 Radiation Interaction with Matters

- 光电效应
- 康普顿散射
- 电子对效应
- 瑞利散射
- 各种作用发生的相对概率

光电效应 Photoelectric Effect

- 现象:入射光子与内层轨道电子作用,全部能量
 传递给电子,使其克服原子核束缚成为自由电子
 (光电子),入射光子消失。
- 结果:处于激发态的原子跃迁,以标识X射线
 (也称次级X射线、荧光X射线)释放能量;激发
 能交给外层电子,从原子中发射出来,称为俄歇电子。
- 主要对象: 低能量光子、高原子序数物质

光电效应 Photoelectric Effect

图 1-12 特征 X 射线和俄歇电子的发射示意图

康普顿散射 Compton Scattering

现象:入射光子与外层电子或自由电子发生弹性 碰撞,一部分能量传递给电子使其飞出(反冲电子);入射光子能量减少,成为散射光子并偏离 方向。 Δλ=2λ₀ sin²(^θ/₂)

康普顿散射 Compton Scattering

• 主要对象:

低原子序数物质概率很高;对中等能量光子, 发生于各种元素

电子对效应 Pair Electron Effect

• 现象:能量高于1.02Mev的光子与原子核发生作用,入射光子放出全部能量而消失,转化为一对正负电子.

电子对效应 Pair Electron Effect

• 主要对象:

高能量光子、高原子序数物质.

瑞利散射 Rayleigh Scattering

- 现象:入射光子与内层轨道电子发生碰撞, 使一个束缚电子跃迁到高能级,随即释放 出约为入射光子能量的散射光子。
- 主要对象:约与原子序数的平方成正比, 与光子能量成反比,对于能量低于200keV 的射线必须注意。

效应	光子能量	作用对象	作用产物
光电效应	较低	内层轨道电子	光电子、标 识射线、俄 歇电子
康普顿效应	中等	外层轨道电子、 自由电子	散射光子、 反冲电子
电子对效应	≥1.02Mev	原子核	正负电子
瑞利散射	低	内层轨道电子	散射光子

各种作用发生的相对概 Probability

•影响因素:光子能量、原子序数。

各种作用发生的相对概 Probability

• 铁中各种效应的发生概率

图 1-19 铁中各种效应的发生概率

各种作用发生的相对概 Probability

各种作用对射线检测影像质量的影响:

- 光电效应、电子对效应:引起的吸收有利于提高 影像的对比度;
- 康普顿效应: 产生的散射会降低影像的对比度;
- 轻金属(康普顿占优)比重金属(光电、电子对占优)的影像质量差;
- 1MeV能量(康普顿绝对占优)比之较低和较高能量的射线照相质量差。

射线的衰减规律 Attenuation of radiation

- 基本概念
- 单色窄束射线衰减规律
- 衰减系数与半厚度
- 宽束、连续谱射线的衰减规律

• 衰减:

射线入射到物体时,发生光电效应、康普顿效 应、电子对效应和瑞利散射,强度减少的现象; 衰减=吸收+散射

• 吸收:

部分入射光子的能量转移到电子或产生电子如 光电效应、电子对效应,光子被吸收;

• 散射:

部分入射光子的能量转移到能量或方向改变了 的光子,如康普顿效应,光子被散射。

- 单色射线:
 单一波长(能量)的射线,线状谱,如某波长的γ射线;
- 多色射线:
 多个波长(能量)的射线,如放射性同位素产生的多个波长的γ射线;
- 白色(连续谱)射线:
 连续波长,连续谱,如X射线管产生的X射线。

• X射线与物质相互作用示意图

图 1-20 X 射线与物质相互作用示意

• 射线透过物体后的射线包括:

一次(透射)射线:未与物质发生作用,能量 和方向未变;

散射线: 与物质发生康普顿散射,能量和方向变化。

- 窄束线:
 只有一次射线,无散射线的射线;
- 宽束射线:
 含有散射线的射线。

图 1-21 获得窄束辐射的装置示意图

单色窄束射线衰减规律attenuation laws for monachrome rays??

• 射线衰减因素:

物体的性质和厚度、光子能量;

- 衰减规律: $I = I_0 e^{-\mu T}$
- 式中: I——透射射线强度、I₀——入射射线强度 µ: 线衰减系数,单位: cm⁻¹

可见,物体的厚度越厚、衰减系数越大,衰减 就越严重。

单色窄束射线衰减规律

例:已知:射线对钢µ=1.5cm⁻¹, l₀=100。
求:钢厚度分别为10mm、20mm、30mm时的透射射线强度。

单色窄束射线衰减规律

解:

根据射线衰减规律
$$I = I_0 e^{-\mu T}$$

当**T=10mm时**,
$$I = I_0 e^{-\mu T}$$

= 100 $e^{-1.5 \times 1}$
= 22.3

• 线衰减系数:入射光子在物体中穿行单位距离时,平均发生各种相互作用的可能性 $\mu = \mu_{ph} + \mu_c + \mu_p + \mu_R$

式中:

 μ_{ph} ——光电效应线衰减系数; μ_{c} ——康普顿效应线衰减系数; μ_{p} ——电子对效应线衰减系数; μ_{p} ——瑞利散射效应线衰减系数。

• 线衰减系数亦可表示为:

$$\mu = \tau + \sigma$$

式中: T: 线吸收吸收 **σ**: 线散射系数

衰减系数与半厚度

attenuation coefficient & half thickness

• 质量衰减系数:

$$\mu_{m} = \frac{\mu}{\rho}$$
式中:
 ρ ——密度
相应地有:
 $\mu_{m} = \tau_{m} + \sigma_{m}$

対常用的能量和常见的物质,线吸收系数远大于线散射系数: $\mu \approx \tau$,所以: $\mu_m = \tau_m$ 吸收系数为: $\tau_m = kZ^3\lambda^3$ 所以,质量衰减系数为: $\mu_m \approx kZ^3\lambda^3$ 这样,线衰减系数为: $\mu \approx k\rho Z^3\lambda^3$ 式中:

k——系数; *ρ*? —物质的密度;
 Z——物体原子序数; *λ*——射线波长。

• 衰减系数与物质原子序数和射线能量间的关系:

$\mu 与 \rho, z^3, \lambda^3 成 正比:$ 物质的 $\rho \uparrow, z \uparrow, \lambda \uparrow$ (即射线的能量↓) ⇒ $\mu \uparrow$

射线能量 MeV	水	碳	铅	铁	铜	铅
0.25	0. 121	0.26	0.29	0.80	0.91	2.7
0.50	0.095	0.20	0.22	9.655	0.70	1.8
1.0	0.069	0.15	0.16	0.469	0.50	0.8
1.5	0.058	0.12	0,132	0.370	0. 41	U. 58
2.0	0.050	0.10	0.116	0. 313	9.35	0.524
3.0	0.041	0.83	0.100	0.270	J. 295	0.482
5.0	0.030	0.067	0.075	0. 244	0.284	0.494
7.0	0. 025	0.061	0.068	0. 233	0.273	0.53
10.0	0.022	0.054	0.061	0.214	0.272	0.6

- 半值层(半价层、半厚度): 入射射线强度衰减为其值的一半的物体厚度 $I = I_0 e^{-\mu T_h} = \frac{I_0}{2}$ $T_h = \frac{\ln 2}{\mu} = \frac{0.693}{\mu}$
- 例:已知:物体对某能量射线的半厚度为2.3mm
 求:射线穿过10mm厚度后透射射线与入射射线
 的强度之比。

衰减系数与半厚度

attenuation coefficient & half thickness

解:
$$T_h = 2.3mm, T = 10mm,$$

 $T = nT_h$
 $n = \frac{T}{T_h} = 4.3478$
所以: $\frac{I}{I_0} = \left(\frac{1}{2}\right)^n \approx 0.05$

答:射线穿过10mm厚度后透射射线与入射射线的强度之比为0.05。

- 末射线穿过厚度为16mm的钢板后,透射射
 线的强度与入射线的强度之比为1:10,求
 射线的半厚度。
- - 某放射性同位素经过100天后,其放射性活 度变为初始值的1/4,求该放射性同位素的 衰变常数。

宽束、连续谱射线的衰减规律 attenuation law

• 散射线和散射比:

射线总强度为一次透射射线和散射线之和:

$$I = I_p + I_s = I_p(1 + I_s / I_p) = I_p(1 + n)$$

式中:
 $n = I_s / I_p$ 称为散射比,
与射线能量、物质性质和物质厚度有关。

宽束、连续谱射线的衰减规律

平均衰减系数 多色射线的强度为I₀,其中不同能量的光子 强度分别为I₀₁, I₀₂, I₀₃...,透射射线的总 强度为I,其中不同能量的光子强度分别为 I₁, I₂, I₃...,则: I₀ = I₀₁+I₀₂+I₀₃+..., I = I₁+I₂+I₃+... 式中:

 $I_1 = I_{01}e^{-\mu_1 T}, I_2 = I_{02}e^{-\mu_2 T}, \dots$ 考虑总的强度衰减,得: $I = I_0 e^{-\overline{\mu} T}$ 式中: $\overline{\mu}$ 为平均衰减系数。
宽束、连续谱射线的衰减规律

对宽束、多色射线,其强度衰减规律为: $I = I_0 e^{-\mu T} (1+n)$

宽束、连续谱射线的衰减规律

• 线质硬化现象

多色射线穿过物体过程中,较低能量射线的强度衰减多,较高能量射线的强度衰减多,较高能量射线的强度衰减 少,透射射线的平均能量高于入射射线的 平均能量。

射线检测原理与灵敏度 Principles & Sensitivity of RT

- 射线检测原理
- 射线检测灵敏度
- 射线检测的特点

假设物体局部存在空隙,计算射线穿过物体后强
 度变化

$$I = I_D + I_S$$

$$I' = I'_D + I'_S$$

式中:

根据射线衰减规律,有:

 $I_{D} = I_{0}e^{-\mu T}$ $I'_{D} = I_{0}e^{-\mu (T+\Box T)}$ $\frac{I'_{D}}{I_{D}} = e^{-\mu T}$ $\frac{\Box I}{I} = -\frac{\mu \Box T}{1+n}$

• 当缺陷的线衰减系数为µ'时:

$$\frac{\Box I}{I} = -\frac{(\mu - \mu')\Box T}{1 + n}$$

称为被检物体的对比度(主因对比度)。

• 结论:

可见,缺陷在透射方向有一定尺寸、缺陷与物体的衰减系数有一定差别、散射控制在一定范围,则缺陷将产生一定的对比度。

射线检测灵敏度 Sensitivity of RT

- 射线检测灵敏度: 相对灵敏度、绝对灵敏度
- 相对灵敏度: 可识别最小细节尺寸与工件厚度之比
- 绝对灵敏度: 可识别最小细节尺寸
- 灵敏度测量: 像质计

射线检测的特点 Characteristics for RT

- 射线照相检测灵敏度高,结果直观;
- 射线照相检测法容易检测局部厚度差的缺陷,对面积型缺陷的检测具有方向性;
- 成本高,检测速度慢、对人体由伤害,须采取防护;
- 射线照相检测用于各种熔化焊接头,也用于铸钢件检测, 一般不宜用于板材、锻件、钢管的检测较少用于钎焊、摩 擦焊等接头的检测;
- 对薄工件的检测没有困难,几乎不存在厚度下限,厚度上限则受射线穿透力的限制。

影像质量 Image Quality

- 概论
- 对比度
- 不清晰度
- 颗粒度

概论 Introduction

- 对比度△D
- 不清晰度U
- 颗粒度σ_D

对比度 Contrast

• 底片光学密度(黑度) D: 底片不透明的程度

 $D=lg(I_0/I)$

• 对比度:底片上两区域的黑度差
 □D=D'-D

$$\Delta D = \frac{0.43\,\mu G\Delta T}{1+n}$$

对比度 Contrast

• 当考虑缺陷的线衰减系数时

$$\Delta D = \frac{0.43(\mu - \mu')G\Delta T}{1+n}$$

- 式中: G——胶片的梯度
- 结论:为提高对比度
 选择透照方向,使△T↑
 选择低能射线,使µ↑
 减少散射,使n↓
 选择胶片及暗室处理,使G↑

不清晰度 Unsharpness

- 不清晰度:几何不清晰度U_a、固有不清晰度U_i
- 几何不清晰度:射线源有一定尺寸,形成半影 $U_g = \frac{dT}{F-T}$
- 式中: d: 射线源焦点尺寸 F: 焦距 T: 工件厚度

降低几何不清晰度措施:

选择小焦点射线源;选择大焦距;工件薄

不清晰度 Unsharpness

• 固有不清晰度:

由胶片二次电子散射形成,受射线能量影响

• 总不清晰度

$$U^2 = U^2_{\ g} + U^2_{\ i}$$

颗粒度 Graininess

- 定义:描述在均匀曝光下,底片黑度地不均匀性。黑度不规则变化的统计平均值
- 影响因素:胶片、射线能量、显影
 感光乳剂中溴化银晶体分布的随机性
 单位面积内溴化银晶体的数目(尺寸)的随机性
 射线光子吸收的随机性
 显影条件和过程

感光乳剂粒度↑射线能量↑显影不足或过度↑→颗粒度↑

因素	含义	影响
对比度	影像与背景的黑度差	决定在射线透照方向上可识 别细节的尺寸
不清晰度	影像边界扩展的宽度	决定在垂直于射线透照方向 上可识别细节的尺寸
颗粒度	影像黑度的不均匀性	决定可显示的细节最小尺寸